YCOB
三硼酸氧钙钇,YCa4O(BO3)3(YCOB)晶体为一种非线性晶体,其非线性光学系数与BBO和LBO晶体相当,具有稳定的物化性能(不潮解)和良好的机械加工性能,并且可以通过提拉法在较短的周期内获得,已成为目前研究最为广泛的非线性光学晶体之一。由于YCOB晶体具有易生长高光学质量大单晶、透光波段宽、相位匹配范围大、损伤阀值高、不潮解等优点,目前已成为频率转换器件的研究热点。由于Y可以和大多数稀土激活离子以任何比例替换,使晶体同时具备激光和非线性光学性质从而成为激光自倍频晶体。YCOB晶体最大的优势就是兼具优良非线性光学吸收和可以制备出大口径器件。
特点
- 电阻率高;
- 各向异性较小;
- 热膨胀系数小;
- 温度接受度高;
- 较少的参数发光;
- 激光诱导损伤阈值高;
物化性能
晶体结构 | 单斜,点群m |
晶格参数 | a=8.0770 Å, b=16.0194 Å , c=3.5308 Å , β=101.167º, Z=2 |
熔点 | 大约1510ºC |
莫氏硬度 | 6~6.5 |
密度 | 3.31 g/cm3 |
导热系数 | 2.6 W/m/K (||X), 2.33 W/m/K (||Y), 3.1 W/m/K (||Z) |
YCOB晶体中有效二阶非线性光学效应的实验值(SHG,Ⅰ型,1.0642µm→0.5321μm)
相位匹配方向 | deff [pm/V] |
θ =90˚,Φ=35.3˚ (XY plane) | 0.39 |
θ =90˚,Φ=35˚ (XY plane) | 0.42 |
θ =31.7˚,Φ=0˚ (XZ plane) | 0.78 |
1.03 | |
θ =148.3˚,Φ=0˚ (XZ plane) | 1.36 |
1.44 | |
θ =65˚,Φ=36.5˚ | 1.14 |
θ =65.9˚,Φ=36.5˚ | 0.91 |
θ =66.3˚,Φ=143.5˚ | 1.45 |
θ =67˚,Φ=143.5˚ | 1.73 |
θ =66˚,Φ=145˚ | 1.8 |
在YCOB晶体中,deff的特性包括反射镜和反演对称性。 这意味着可以通过选择两个独立的象限来完全描述deff的空间分布,例如(0°<θ<90°,0°<Φ<90°)和(0°<θ<90°,90 °<Φ<180°)。此后,这两个象限的每个(θ,Φ)方向的deff值等于(180°-θ,180°-Φ)方向的deff值,反之亦然。 例如,方向(θ= 33°,ϕ = 9°)和(θ= 147°,Φ= 171°)具有相等的deff值。 |
YCOB主平面SHG、SFG内角带宽的实验值
相互作用波长[μm] | Φpm [deg] | θpm [deg] | Δϕint[deg] | Δθint[deg] |
XY plane, θ =90◦ | ||||
SHG, o+o ⇒ e | ||||
1.0642⇒0.5321 | 35 | 0.09 | ||
SHG, e+o ⇒ e | ||||
1.0642⇒0.5321 | 73.4 | 0.32 | ||
SFG, o+o ⇒ e | ||||
1.0642+0.5321⇒0.3547 | 73.2 | 0.11 | ||
YZ plane, φ =90◦ | ||||
SHG, e+o ⇒ o | ||||
1.0642⇒0.5321 | 58.7 | 0.74 | ||
SFG, e+e ⇒ o | ||||
1.0642+0.5321⇒0.3547 | 58.7 | 0.19 | ||
XZ plane, Φ=0◦,θ | ||||
SHG, o+o ⇒ e | ||||
1.0642⇒0.5321 | 31.7 | 0.08 |
相位匹配角实验值(T=293K)
相互作用波长[µm] | Φexp[deg] |
XY plane, θ=90˚ | |
SHG, o+o → e | |
1064 → 532 | 35 |
738 → 369 | 77.3 |
SHG, type Ⅰ, along Y | |
724 → 362 | 90 |
SFG, o+o → e | |
1064+532 → 355 | 75.2 |
SHG, type Ⅱ, along Y | |
1030 → 515 | 90 |
SFG, e+o → e | |
1908+1064 → 683 | 81.2 |
光谱
蓝线是SHG后的光谱强度。 红线是Wizzler测得的相位 | 蓝线是SHG之后的脉冲FTL形状。 红线是Wizzler测量的时间形状。 |
通过基于BBO晶体的第一阶段(黑色实线)和基于YCOB晶体的第二阶段(红色实线)获得的OPA光谱。 | YCOB晶片的X射线摇摆曲线 |
YCOB晶体的透射光谱 |
参考文献
[1] Zhong D , Bing T , Kong W , et al. Effect of disordered structure and crystal defects on heat transfer behavior in Er:Yb: YCa4O(BO3)3 crystal[J]. Journal of Physics and Chemistry of Solids, 2018, 124:121-129. |
[2] Tu X , Zheng Y , Xiong K , et al. Crystal growth and characterization of 4 in. YCa4O(BO3)(3) crystal[J]. Journal of Crystal Growth, 2014, 401(sep.1):160-163. |
[3] Segonds P , Boulanger B , B Ménaert, et al. Optical characterizations of YCa4O(BO3)3 and NdlYCa4O(BO3)3 crystals[J]. Optical Materials, 2007, 29(8):975-982. |
[4] Fujimoto Y , Yanagida T , Yokota Y , et al. Scintillation and optical properties of Pb-doped YCa 4O(BO 3) 3 crystals[J]. Nuclear Inst & Methods in Physics Research A, 2011, 652(1):238-241. |
[5] Goldner P , Guillot-No?L O , Higel P . Optical bistability in Yb3+:YCa4O(BO3)3 crystal[J]. Optical Materials, 2004, 26(3):281-286. |
[6] Hammons D A , Eichenholz J M , Ye Q , et al. Laser action in Yb3+: YCOB (Yb3+:YCa4O(BO3)3)[J]. Optics Communications, 1998, 156(4):327-330. |
[7] Kalidasan M , Kumar R A , Asokan K , et al. Effect of 120 MeV Au9+ ion irradiation on structural, optical and dielectric properties of YCa4O(BO3)3 nonlinear optical crystal[J]. Nuclear Inst & Methods in Physics Research B, 2012, 280(Jun.1):134-139. |
[8] A H Z , A H W , A Y W , et al. Properties of single crystal piezoelectric Ca 3 TaGa 3 Si 2 O 14 and YCa 4 O(BO 3 ) 3 resonators at high-temperature and vacuum conditions[J]. Sensors and Actuators A: Physical, 2014, 216(3):167-175. |
[9] Ye Q , Chai B . Crystal growth of YCa4O(BO3)3 and its orientation[J]. Journal of Crystal Growth, 1999, 197(s 1–2):228–235. |
[10] J. T , Ingle, and, et al. Combustion synthesis and optical properties of Oxy-borate phosphors YCa4O(BO3)3:RE3+ (RE=Eu3+, Tb3+) under UV, \\{VUV\\} excitation[J]. Journal of Alloys and Compounds, 2014, 585(1):633-636. |
[11] Shah L , Ye Q , Eichenholz J M , et al. Laser tunability in Yb 3+:YCa 4O(BO 3) 3 {Yb:YCOB}[J]. Optics Communications, 1999, 167(1-6):149-153. |
[12] Sano H , Matsumoto T , Matsumoto Y , et al. A combinatorial approach to the discovery and optimization of YCa 4O(BO 3) 3-based luminescent materials[J]. Applied Surface Science, 2006, 252(7):2493-2496. |
[13] Krishnakumar V , Nagalakshmi R . Polarised infrared and Raman studies of YCa4O(BO3)3 a non-linear optical single crystal[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2004, 60(12):2733-2739. |
[14] Jiang H , J Wang, Zhang H , et al. Spectral and luminescent properties of Yb3+ ions in YCa4O(BO3)3 crystal[J]. CHEMICAL PHYSICS LETTERS, 2002. |
[15] Jang W K , Ye Q , Eichenholz J , et al. Second harmonic generation in Yb doped YCa4O(BO3)3[J]. Optics Communications, 1998, 155(4-6):332-334. |
[16] Wang K M , Hui H , Chen F , et al. Refractive index profiles in YCa 4O(BO 3) 3 and Nd:YCa 4O(BO 3) 3 waveguides created by MeV He ions[J]. Nuclear Instruments & Methods in Physics Research, 2002, 191(1):789-793. |
[17] Investigation on intracavity second-harmonic generation at 1.06 μm in YCa4O(BO3)3 by using an end-pumped Nd:YVO4 laser[J]. Optics Communications, 2000. |
[18] Du C , Wang Z , Xu G , et al. Diode-end-pumped solid-state ultraviolet laser based on intracavity third-harmonic generation of 1.06mum in YCa4O(BO3)3 crystal[C]// Iumrs International Conference on Electronic Materials Iumrs-icem. 2002. |
与YCOB相关的案例:
与YCOB相关的解决方案:
暂无与本产品相关的解决方案,请访问万博体育全站ManBetX官网的解决方案页面了解其他解决方案。
与YCOB相关的视频:
暂无与本产品相关的视频,请访问万博体育全站ManBetX官网的视频页面播放其他视频。