Yb:KGW
Yb3+:KGd(WO4)2(Yb:KGW)是最有前途的激光活性材料之一。Yb:KGW晶体有望取代Nd:YAG晶体和Yb:YAG晶体应用于大功率二极管泵浦激光系统。Yb:KGW在高功率、短脉冲飞秒激光及其广泛应用方面也具有巨大的潜力。
Yb3:KGW具有大的吸收系数,低的量子缺陷,高的吸收和发射截面
Yb离子简单的二能级电子结构避免了上转换、激发态吸收和浓度猝灭等非期望的损耗过程。与常用的Nd:YAG晶体相比,Yb:KGW晶体具有更大的吸收带宽、3-4倍的发射寿命、更高的存储容量、更低的量子缺陷,更适合于二极管泵浦。斯托克斯位移越小,加热越小,激光效率越高。与Yb:YAG和Yb:YCOB等掺Yb激光晶体相比,Yb:KGW具有更高的吸收截面(13-17倍)、更低的量子缺陷(~4%)、比Yb:YCOB高9倍的发射截面和比Yb:YAG宽的发射带、高的非线性折射系数和斜率效率最高(87%)。
特点
- 吸收线宽度宽,无需严格的温度控制即可获得相位匹配的LD泵浦源的泵浦波长;
- 量子缺陷低,泵浦波长非常接近激光输出波长,导致固有的激光斜率效率高,理论上量子效率可达90%左右;
- 由于泵浦的能级接近激光的上限,因此没有辐射弛豫的材料中的热负荷很低,仅是掺钕钕激光材料的热负荷的三分之一;
- 无激发态吸收和上转换,光转换效率高;
- 荧光寿命长,是相同的掺钕激光材料的三倍以上,有利于能量存储;
物理和化学特性
化学式 | Yb3+:KGd(WO4)2 |
晶体结构 | 单斜双钨酸盐 |
密度 | 7.27 g/cm3 |
传输范围 | 0.35-5.5 μm |
莫氏硬度 | 4 to 5 |
1060 nm的折射率 | ng = 2.037, np = 1.986, nm=2.033 |
光学和热学特性
导热系数 | Ka=2.6 W/mK, Kb=3.8 W/mK, Kc=3.4 W/mK |
热光学系数@ 1064 nm | dnp/dT=-15.7 * 10-6 K-1 |
dnm/dT=-11.8 * 10-6 K-1 | |
dng/dT=-17.3 * 10-6 K-1 | |
热膨胀 | αa=4X10-6 /°C |
αb=3.6X10-6 /°C | |
αc=8.5X10-6 /°C | |
熔点温度 | 1075 °C |
吸收截面 | 1.2X10-19 cm2 |
受激发射横截面(E || a) | 2.6X10-20 cm2 |
激光波长 | 1023-1060 nm |
激光阈值 | 35 mW |
Yb3 +的2F5/2歧管在77 K时的纯能级(cm-1) | 10682, 10471, 10188 |
在77K时,Yb3 +的2F7/2流形的斯塔克能级(以cm-1为单位) | 535, 385, 163, 0 |
光学损伤阈值,GW / cm2 | 20 |
光谱性质
吸收峰波长,lpump,[nm] | 981.2 |
吸收线宽,Dlpump,[nm] | 3.7 |
峰吸收横截面,冒泡,[cm2] | 1.2×10-19 |
峰值吸收系数,[cm-1] | 26 |
发射波长,lse,[nm] | 1023 |
发射线宽,Dlse,[nm] | 20 |
峰值发射截面,sse,[cm2] | 2.8×10-20 |
量子效应,lpump / lse,[nm] | 0.959 |
荧光寿命,tem [ms] | 0.6 |
吸收和发射光谱
参考文献
[1] Major A , Cisek R , Greenhalgh C , et al. A diode-pumped high power extended cavity femtosecond Yb:KGW laser: From development to applications in nonlinear microscopy[C]// Photonics North 2006. 2006. |
[2] Zhao H , Major A . Megawatt peak power level sub-100 fs Yb:KGW oscillators[J]. Optics Express, 2014, 22(25):30425-31. |
[3] Paunescu G , Hein J , Sauerbrey R . 100-fs diode-pumped Yb:KGW mode-locked laser[J]. Applied Physics B, 2004, 79(5):555-558. |
[4] Kuleshov N V , Lagatsky A A , Shcherbitsky V G , et al. CW laser performance of Yb and Er,Yb doped tungstates[J]. Applied Physics B, 1997, 64(4):409-413. |
[5] Holtom G R . Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars[J]. Optics Letters, 2006, 31(18):2719-21. |
[6] Kuleshov N V , Lagatsky A A , Podlipensky A V , et al. Pulsed laser operation of Y b-dope d KY(WO(4))(2) and KGd(WO(4))(2).[J]. Optics Letters, 1997, 22(17):1317-9. |
[7] Zhao H , Major A . Powerful 67 fs Kerr-lens mode-locked prismless Yb:KGW oscillator[J]. Optics Express, 2013, 21(26):31846-31851. |
[8] Pekarek S , Fiebig C , Stumpf M C , et al. Diode-pumped gigahertz femtosecond Yb:KGW laser with a peak power of 3.9 kW[J]. Optics Express, 2010, 18(16):16320-16326. |
[9] Hellstroem J E , Bjurshagen S , Pasiskevicius V , et al. Efficient Yb:KGW lasers end-pumped by high-power diode bars[J]. Applied Physics B, 2006, 83(2):235-239. |
[10] Major A , D Sandkuijl, Barzda V . Efficient frequency doubling of a femtosecond Yb:KGW laser in a BiB3O6 crystal[J]. Optics Express, 2009, 17(14):12039-42. |
[11] S Chénais, Druon F , Balembois F , et al. Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW[J]. Optical Materials, 2003, 22(2):129-137. |
[12] Major A , D Sandkuijl, Barzda V . A diode-pumped continuous-wave Yb:KGW laser with Ng-axis polarized output[J]. Laser Physics Letters, 2010, 6(11):779-781. |
[13] Hellstrm J E , Bjurshagen S , Pasiskevicius V . Laser performance and thermal lensing in high-power diode-pumped Yb:KGW with athermal orientation[J]. Applied Physics B, 2006, 83(1):55-59. |
[14] Akbari R , Zhao H , Fedorova K A , et al. Quantum-Dot Saturable Absorber and Kerr Lens Mode-Locked Yb:KGW Laser with >300 kW of Peak Power[J]. Optics Letters, 2016, 41(16). |
[15] Russbueldt P , Mans T , Weitenberg J , et al. Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier[J]. Optics Letters, 2010, 35(24):4169-71. |
[16] Sandkuijl D , Cisek R , Major A , et al. Differential microscopy for fluorescence-detected nonlinear absorption linear anisotropy based on a staggered two-beam femtosecond Yb:KGW oscillator[J]. Biomedical Optics Express, 2010, 1(3):895-901. |
[17] Hellstrm J , Henricsson H , Pasiskevicius V , et al. Polarization-tunable Yb:KGW laser based on internal conical refraction[J]. Optics Letters, 2007, 32(19):2783-2785. |
[18] Joel A , Berger, Michael J , et al. High-power, femtosecond, thermal-lens-shaped Yb:KGW oscillator.[J]. Optics express, 2008. |
[19] Major A , Cisek R , Barzda V . Development of diode-pumped high average power continuous-wave and ultrashort pulse Yb:KGW lasers for nonlinear microscopy[C]// Commercial and Biomedical Applications of Ultrafast Lasers VI. International Society for Optics and Photonics, 2006. |
[20] Alexander, Klenner, Matthias, et al. A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal[J]. Optics Express, 2013. |
[21] Erhard S , Gao J , Giesen A , et al. High power Yb:KGW and Yb:KYW thin disk laser operation[C]// Conference on Lasers & Electro-optics. IEEE, 2001. |
[22] Zhao H , Major A . Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing[J]. Applied Physics B, 2016, 122(6):1-6. |
[23] Akbari R , Zhao H , Major A . High-power continuous-wave dual-wavelength operation of a diode-pumped Yb:KGW laser[J]. Optics Letters, 2016, 41(7):1601. |
[24] T Balčiūnas, OD Mücke, P Mišeikis, et al. Carrier envelope phase stabilization of a Yb:KGW laser amplifier[J]. Optics Letters, 2011, 36(16):3242. |
[25] Lagatsky A A , Abdolvand A , Kuleshov N V . Passive Q switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO4)2 laser[J]. Optics Letters, 2000, 25(9):616-8. |
[26] Molis G , Adomavicius R , Krotkus A , et al. Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser[J]. Electronics Letters, 2007, 43(3):190-191. |
[27] Hoos F , Li S , Meyrath T P , et al. Thermal lensing in an end-pumped Yb : KGW slab laser with high power single emitter diodes[J]. Optics Express, 2008, 16(9):6041-6049. |
[28] Kisel V E , Rudenkov A S , Pavlyuk A A , et al. High-power, efficient, semiconductor saturable absorber mode-locked Yb:KGW bulk laser[J]. Optics Letters, 2015, 40(12):2707-10. |
与Yb:KGW相关的案例:
与Yb:KGW相关的解决方案:
暂无与本产品相关的解决方案,请访问万博体育全站ManBetX官网的解决方案页面了解其他解决方案。
与Yb:KGW相关的视频: