当前位置: 首页 » Products » 激光晶体 » Tm:YLF

Tm:YLF

当前位置: 首页 » Products » 激光晶体 » Tm:YLF
Tm:YLF

两微米Tm3+激光器在科学、国防和医疗领域有着广泛的应用。铥很容易被替代成许多适用于高平均功率激光系统的晶体主体,其吸收带约为0.8μm,允许用商用高功率激光二极管进行激发。掺铥氟化钇锂晶体具有较低的非线性折射率和热光常数,非常适合在科研、生产、教育等光电领域的应用。该晶体是具有负折射率温度系数的负单轴晶体,它可以抵消一些热畸变,从而具有高光束质量的输出。泵浦波长为792nm,波长1900nm的线偏振激光器沿轴方向输出。从c轴输出的光是非线性偏振的。通过选择合适的晶体尺寸和掺杂浓度,可以获得高功率激光输出。

  • 非线性折射率低
  • 热光常数低
  • 极化损耗低
  • 上能级荧光寿命长
  • 上转换效应小
  • 敏化离子无吸收损失

材料规格

浓度公差(atm%)2-4 at.%
晶格常数4~5
取向a-切口,其他方向也可用
平行性<10”
垂直性<5”
表面质量10-5 刮痕 & 凹陷
波前畸变λ/8 @ 633nm
表面平整度λ/10 @ 633nm
通光孔径95%
长度公差±0.1 mm
面尺寸公差+0/-0,1 mm
防护倒角<0,1 mm 45˚
损伤阈值over 15J/cm2 TEM00, 10ns, 10Hz

物理和化学特性

晶体结构四方晶系
晶格常数a=5.16Å; c=10.85Å
密度3.99 g/cm³
熔点819℃
导热系数6 Wm-1K-1
热光学系数(dn / dT)π = 4.3 x 10-6 x °K-1; σ = 2.0 x 10-6 x °K-1
热膨胀率/(10-6·K-1 @ 25°C)10.1×10-6 (//c) K-1,  14.3×10-6((//a)  K-1
硬度(莫氏)5
剪切模量/ Gpa85
比热0.79 J/gK
泊松比0.3

光学和光谱性质

激光跃迁3F43H6
激光波长π:1880 nm; σ:1908 nm
峰吸收截面0.55×10-20 cm2
峰值波长处的吸收带宽16 nm
吸收峰波长792 nm
3F4 铥能级的寿命16 ms
量子效率2
非线性指标n20.6 x 10-13
光学质量< 0.3 x 10-5
折射率@ 1064 nmno=1.448, ne=1.470
激光引起的损伤阈值>10 J/cm2@1900 nm, 10 ns
涂层在两边R<0,5% @792 nm + R<0,15% @1800-1960 nm; 还可提供定制涂层

吸收和发射光谱

Tm-YLF激光晶体-发射谱2-南京光宝-CRYLINKTm-YLF激光晶体-发射谱1-南京光宝-CRYLINK
Tm-YLF激光晶体-吸收谱2-南京光宝-CRYLINKTm-YLF激光晶体-吸收谱1-南京光宝-CRYLINK

参考文献

[1] Yue, Chen, Xin-Yu, et al. A compact high efficient Tm:YLF laser dual-end-pumped by an equidirectional-polarizing fiber coupled laser diode at room temperature[J]. Optik: Zeitschrift fur Licht- und Elektronenoptik: = Journal for Light-and Electronoptic, 2018, 158:1553-1557.
[2]  Cui Z ,  Yao B Q ,  Duan X M , et al. A graphene saturable absorber for a Tm:YLF pumped passively Q-switched Ho:LuAG laser[J]. Optik – International Journal for Light and Electron Optics, 2016, 127(5):3082-3085.
[3]  Duan X M ,  Ding Y ,  Dai T Y , et al. A linewidth-narrowed Tm:YLF laser using by two etalons[J]. Optik – International Journal for Light and Electron Optics, 2015, 126(19):2108-2109.
[4]  Wang Y P ,  Dai T Y ,  Wu J , et al. A Q-switched Ho: YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm: YLF laser[J]. Infrared Physics & Technology, 2018, 91:8-11.
[5]  Dai Y ,  Li Y ,  Zou X , et al. Compact passively Q-switched Tm:YLF laser with a polycrystalline Cr:ZnS saturable absorber[J]. Optics & Laser Technology, 2014, 57:202-205.
[6]  Zhang B ,  Li L ,  He C , et al. Compact self-Q-switched Tm:YLF laser at 1.91 μm[J]. Optics & Laser Technology, 2018, 100.
[7]  Antipov O L ,  Zakharov N G ,  Fedorov M , et al. Cutting effects induced by 2 μm laser radiation of cw Tm:YLF and cw and Q-switched Ho:YAG lasers on ex-vivo tissue[J]. Medical Laser Application, 2011, 26(2):67-75.
[8] Linjun, Li, Xining, et al. High beam quality passively Q-switched operation of a slab Tm:YLF laser with a MoS2 saturable absorber mirror – ScienceDirect[J]. Optics & Laser Technology, 2019, 112:39-42.
[9]  Duan X M ,  Ding Y ,  Yao B Q , et al. High power acousto-optical Q-switched Tm:YLF-pumped Ho:GdVO4 laser[J]. Optik – International Journal for Light and Electron Optics, 2018, 163:39-42.
[10]  Ding Y ,  Han L ,  Yao B Q , et al. High power Tm:YLF bulk laser wavelength-stabilized by two F-P etalons[J]. Optik – International Journal for Light and Electron Optics, 2015, 126(9-10):990-992.
[11] Y, Ding,  D. X , et al. High power Tm:YLF laser operating at 1.94 μm[J]. Optik International Journal for Light & Electron Optics, 2015.
[12]  Yang X T ,  Mu Y L ,  Zhao N B . Ho:SSO solid-state saturable-absorber Q switch for pulsed Ho:YAG laser resonantly pumped by a Tm:YLF laser[J]. Optics & Laser Technology, 2018, 107:398-401.
[13]  Yokozawa T ,  Izawa J ,  Hara H . Mode control of a Tm:YLF microchip laser by a multiple resonator[J]. Optics Communications, 1998, 145( 1–6):98-100.
[14]  Hecht H ,  Burshtein Z ,  Katzir A , et al. Passive Q-switching of a Tm:YLF laser with a Co2+ doped silver halide saturable absorber[J]. Optical Materials, 2017, 64:64-69.
[15]  Razumova I ,  Tkachuk A ,  Nikitichev A , et al. Spectral-luminescent properties of Tm:YLF crystal[J]. JOURNAL OF ALLOYS AND COMPOUNDS, 1995, 225(1-2):129-132.
[16]  Kalachev Y L ,  Mihailov V A ,  Podreshetnikov V V , et al. The study of a Tm:YLF laser pumped by a Raman shifted Erbium fiber laser at 1678 nm[J]. Optics Communications, 2011, 284(13):3357-3360.

如果你对我们的Tm:YLF感兴趣,请联系我们获取价格或申请样品。

Tm:YLF相关的文章:

暂无与本产品相关的文章,请访问万博体育全站ManBetX官网的文章页面播放其他文章。

Tm:YLF相关的案例:

Tm:YLF相关的解决方案:

Tm:YLF相关的视频:

XML 地图