当前位置: 首页 » Products » 激光晶体 » Tm:YAG

Tm:YAG

当前位置: 首页 » Products » 激光晶体 » Tm:YAG
Tm:YAG

Tm:YAG在0.82μm波长范围内的3H43H6跃迁上运行。它可以用波长范围为0.78 – 0.8μm的高效二极管激光器泵浦。该过渡具有小的量子缺陷,可实现低散热。为了获得良好的能量存储,激发态寿命可以很长,大约为毫秒。它还具有足够的增益带宽,可根据主体材料和工作温度来支持亚ps长的脉冲。与单晶材料相比,透明陶瓷材料结合了单晶和玻璃的优点。通过固态反应和真空烧结来制造透明陶瓷材料。因此,它们不仅具有与单晶一样优良的光学和热性能,而且还具有大尺寸、高浓度的特点。此外,它们还具有其他优势,例如制造周期短,成本较低和多功能样品。

材料规格

Tm浓度公差(atm%)Tm:0.5~5at%
取向[111]<5º
平行性≤10″
垂直性≤5′
表面质量10-5 (MIL-O-13830A)
波前失真≤ 0.125λ/25 mm @632.8nm
表面平整度λ/8@632nm
通光孔径>95%
倒角 0.15±0.05mm
尺寸D: 2~10mmL: 3~150mm
涂层AR: ≤0.25% @2μm

物理和化学特性

激光跃迁3F43H6
激光波长1.87~2.16μm
折射率的温度依赖性7.3 10-6/K
吸收截面7.5×10-21cm2
二极管泵浦带785nm, 680nm
发射截面@ 2013nm2.9×10-20 cm2
荧光寿命 11ms
折射率@ 632nm1.83

光学和光谱性质

激光跃迁3F43H6
激光波长1.87~2.16μm
折射率的温度依赖性7.3 10-6/K
吸收截面7.5×10-21cm2
二极管泵浦带785nm, 680nm
发射截面@ 2013nm2.9×10-20 cm2
荧光寿命 11ms
折射率@ 632nm1.83

参考文献

[1]  Liu X ,  Huang H ,  Zhu H , et al. A modified model for the LD pumped 2 μm Tm:YAG laser: Thermal behavior and laser performance[J]. Optics Communications, 2014, 332:332-338.
[2]  C C T W A ,  B F C ,  C Y L J . A simple method to estimate the thermal focal length of LD-end-pumped Tm:YAG crystal at room temperature – ScienceDirect[J]. Optik, 2015, 126( 13):1300-1302.
[3]  Wang C ,  Niu Y ,  Liu W , et al. A theoretical and experimental investigation for wavelength switchable TmYAG laser modulated by Tm:YAG crystal length[J]. Optics & Laser Technology, 2015, 68:18-22.
[4]  Bernard J E ,  Whitford B G ,  Madej A A . A Tm:YAG laser for optical frequency measurements: mixing 148 THz light with CO2 laser radiation[J]. Optics Communications, 1997, 140(1-3):45-48.
[5]  Quehl G , J Grünert,  Elman V , et al. A tunable dual frequency Tm:YAG laser[J]. Optics Communications, 2002, 190(1-6):303-307.
[6] A, Rameix, and, et al. An efficient, diode-pumped, 2 μm Tm:YAG waveguide laser[J]. Optics Communications, 1997.
[7]  Ju Y ,  Wu C ,  Qiang W , et al. Diode-end-pumped linear-polarized single-frequency Tm:YAG laser at room temperature[J]. Optics Communications, 2012, 283(1):93-97.
[8] Sidorowicz, Agata, Nakielska, et al. Effect of Tm2O3 doping on microstructure and optical properties of Tm:YAG ceramics.[J]. Ceramics International, 2015.
[9] C Bollig and W.A Clarkson and R.A Hayward and D.C Hanna. Efficient high-power Tm:YAG laser at 2 μm, end-pumped by a diode bar[J]. Optics Communications, 1998.
[10]  Zhang S ,  Wang X ,  Kong W , et al. Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser[J]. Optics Communications, 2013, 286(Complete):288-290.
[11]  Cheng L ,  Shen D ,  Jie S , et al. Flash-lamp pumped normal-mode and Q-switched Cr–Tm:YAG laser performance at room temperature[J]. Optics Communications, 1999, 164(1-3):63-67.
[12]  Xu X ,  Feng W ,  Xu W , et al. Growth and spectral properties of Yb,Tm:YAG crystal[J]. Journal of Alloys and Compounds, 2008, 462(1-2):347-350.
[13]  Jin L ,  Liu P ,  Liu X , et al. High average power of Q-switched Tm:YAG slab laser[J]. Optics Communications, 2016, 372:241-244.
[14]  Zou Y ,  Wei Z ,  Wang Q , et al. High-efficiency diode-pumped Tm:YAG ceramic laser[J]. Optical Materials, 2013, 35(4):804-806.
[15]  Wu C ,  Fei C ,  Ju Y , et al. High-power single-longitudinal-mode operation of Tm:YAG laser using Fabry–Perot etalons and volume Bragg grating[J]. Optics Communications, 2012, 285(10-11):2693-2696.
[16]  Xu W ,  Xu X ,  Wu F , et al. Infrared to Visible Upconversion Fluorescence in Yb,Tm :YAG Single Crystal[J]. Optics Communications, 2007, 272(1):182-185.
[17]  Wu C ,  Ju Y ,  Qiang W , et al. Injection-seeded Tm:YAG laser at room temperature[J]. Optics Communications, 2011, 284(4):994-998.
[18]  Ma Q L . Light scattering and 2-μm laser performance of Tm:YAG ceramic[J]. Optics Communications, 2011, 284(6):1645-1647.
[19] T Chanelière,  Bonarota M ,  Damon V , et al. Light storage protocols in Tm:YAG[J]. Journal of Luminescence, 2009, 130(9):1572-1578.
[20] Jianguo, Li, Tao, et al. Measurement of output characteristics of Tm:YAG laser at 25–300K[J]. Optics Communications, 2015, 334:118-121.
[21]  Merkel K D ,  Mohan R K ,  Cole Z , et al. Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG[J]. Journal of Luminescence, 2004, 107(1/4):62-74.
[22]  Louchet A ,  Du Y L ,  Brouri T , et al. Optical investigation of nuclear spin coherence in Tm:YAG[J]. Solid State Sciences, 2008, 10(10):1374-1378.
[23] Output characteristics of acousto-optical cavity dumped Tm:YAG ceramic laser[J]. Optik – International Journal for Light and Electron Optics, 2016, 127(6):3175-3178.
[24]  Sidorowicza A ,  Wajlera A , Helena Węglarza, et al. Precipitation of Tm2O3 nanopowders for application in reactive sintering of Tm:YAG[J]. Ceramics International, 2014, 40(7):10269-10274.
[25]  Zhang W X ,  Pan Y B ,  Zhou J , et al. Preparation and characterization of transparent Tm:YAG ceramics[J]. Ceramics International, 2011, 37(3):1133-1137.
[26] R Müller,  Fuhrberg P ,  Teichmann H O , et al. Pulsed and cw Cr,Tm:YAG laser with simultaneous diode and flashlamp excitation[J]. Optics & Laser Technology, 2005, 37(7):570-576.
[27] Chunting Wu⁎,  Jiang Y ,  Wang C , et al. Pulse-diode-intermittent-pumped 2-µm acousto-optically Q-switched Tm:YAG laser[J]. Infrared Physics & Technology, 2019, 96:151-154.
[28]  Ferrier A ,  Ilas S ,  Goldner P , et al. Scandium doped Tm:YAG ceramics and single crystals: Coherent and high resolution spectroscopy[J]. Journal of Luminescence, 2017:S0022231317316599.
[29]  Fei B J ,  Huang J Q ,  Guo W , et al. Spectroscopic properties and laser performance of Tm:YAG ceramics[J]. Journal of Luminescence, 2013, 142(Complete):189-195.
[30] Wu, C, T, et al. Thermal effect and laser characteristics of LD end-pumped CW Tm:YAG laser at room temperature[J]. Journal for Light and Electronoptic, 2017.

如果你对我们的Tm:YAG感兴趣,请联系我们获取价格或申请样品。

Tm:YAG相关的文章:

暂无与本产品相关的文章,请访问万博体育全站ManBetX官网的文章页面播放其他文章。

Tm:YAG相关的案例:

暂无与本产品相关的案例,请访问万博体育全站ManBetX官网的案例页面查看其他案例。

Tm:YAG相关的解决方案:

Tm:YAG相关的视频:

暂无与本产品相关的视频,请访问万博体育全站ManBetX官网的视频页面播放其他视频。

XML 地图