Tm:YAG
Tm:YAG在0.82μm波长范围内的3H4–3H6跃迁上运行。它可以用波长范围为0.78 – 0.8μm的高效二极管激光器泵浦。该过渡具有小的量子缺陷,可实现低散热。为了获得良好的能量存储,激发态寿命可以很长,大约为毫秒。它还具有足够的增益带宽,可根据主体材料和工作温度来支持亚ps长的脉冲。与单晶材料相比,透明陶瓷材料结合了单晶和玻璃的优点。通过固态反应和真空烧结来制造透明陶瓷材料。因此,它们不仅具有与单晶一样优良的光学和热性能,而且还具有大尺寸、高浓度的特点。此外,它们还具有其他优势,例如制造周期短,成本较低和多功能样品。
材料规格
Tm浓度公差(atm%) | Tm:0.5~5at% |
取向 | [111],<5º |
平行性 | ≤10″ |
垂直性 | ≤5′ |
表面质量 | 10-5 (MIL-O-13830A) |
波前失真 | ≤ 0.125λ/25 mm @632.8nm |
表面平整度 | λ/8@632nm |
通光孔径 | >95% |
倒角 | 0.15±0.05mm |
尺寸 | D: 2~10mm,L: 3~150mm |
涂层 | AR: ≤0.25% @2μm |
物理和化学特性
激光跃迁 | 3F4→3H6 |
激光波长 | 1.87~2.16μm |
折射率的温度依赖性 | 7.3 10-6/K |
吸收截面 | 7.5×10-21cm2 |
二极管泵浦带 | 785nm, 680nm |
发射截面@ 2013nm | 2.9×10-20 cm2 |
荧光寿命 | 11ms |
折射率@ 632nm | 1.83 |
光学和光谱性质
激光跃迁 | 3F4→3H6 |
激光波长 | 1.87~2.16μm |
折射率的温度依赖性 | 7.3 10-6/K |
吸收截面 | 7.5×10-21cm2 |
二极管泵浦带 | 785nm, 680nm |
发射截面@ 2013nm | 2.9×10-20 cm2 |
荧光寿命 | 11ms |
折射率@ 632nm | 1.83 |
参考文献
[1] Liu X , Huang H , Zhu H , et al. A modified model for the LD pumped 2 μm Tm:YAG laser: Thermal behavior and laser performance[J]. Optics Communications, 2014, 332:332-338. |
[2] C C T W A , B F C , C Y L J . A simple method to estimate the thermal focal length of LD-end-pumped Tm:YAG crystal at room temperature – ScienceDirect[J]. Optik, 2015, 126( 13):1300-1302. |
[3] Wang C , Niu Y , Liu W , et al. A theoretical and experimental investigation for wavelength switchable TmYAG laser modulated by Tm:YAG crystal length[J]. Optics & Laser Technology, 2015, 68:18-22. |
[4] Bernard J E , Whitford B G , Madej A A . A Tm:YAG laser for optical frequency measurements: mixing 148 THz light with CO2 laser radiation[J]. Optics Communications, 1997, 140(1-3):45-48. |
[5] Quehl G , J Grünert, Elman V , et al. A tunable dual frequency Tm:YAG laser[J]. Optics Communications, 2002, 190(1-6):303-307. |
[6] A, Rameix, and, et al. An efficient, diode-pumped, 2 μm Tm:YAG waveguide laser[J]. Optics Communications, 1997. |
[7] Ju Y , Wu C , Qiang W , et al. Diode-end-pumped linear-polarized single-frequency Tm:YAG laser at room temperature[J]. Optics Communications, 2012, 283(1):93-97. |
[8] Sidorowicz, Agata, Nakielska, et al. Effect of Tm2O3 doping on microstructure and optical properties of Tm:YAG ceramics.[J]. Ceramics International, 2015. |
[9] C Bollig and W.A Clarkson and R.A Hayward and D.C Hanna. Efficient high-power Tm:YAG laser at 2 μm, end-pumped by a diode bar[J]. Optics Communications, 1998. |
[10] Zhang S , Wang X , Kong W , et al. Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser[J]. Optics Communications, 2013, 286(Complete):288-290. |
[11] Cheng L , Shen D , Jie S , et al. Flash-lamp pumped normal-mode and Q-switched Cr–Tm:YAG laser performance at room temperature[J]. Optics Communications, 1999, 164(1-3):63-67. |
[12] Xu X , Feng W , Xu W , et al. Growth and spectral properties of Yb,Tm:YAG crystal[J]. Journal of Alloys and Compounds, 2008, 462(1-2):347-350. |
[13] Jin L , Liu P , Liu X , et al. High average power of Q-switched Tm:YAG slab laser[J]. Optics Communications, 2016, 372:241-244. |
[14] Zou Y , Wei Z , Wang Q , et al. High-efficiency diode-pumped Tm:YAG ceramic laser[J]. Optical Materials, 2013, 35(4):804-806. |
[15] Wu C , Fei C , Ju Y , et al. High-power single-longitudinal-mode operation of Tm:YAG laser using Fabry–Perot etalons and volume Bragg grating[J]. Optics Communications, 2012, 285(10-11):2693-2696. |
[16] Xu W , Xu X , Wu F , et al. Infrared to Visible Upconversion Fluorescence in Yb,Tm :YAG Single Crystal[J]. Optics Communications, 2007, 272(1):182-185. |
[17] Wu C , Ju Y , Qiang W , et al. Injection-seeded Tm:YAG laser at room temperature[J]. Optics Communications, 2011, 284(4):994-998. |
[18] Ma Q L . Light scattering and 2-μm laser performance of Tm:YAG ceramic[J]. Optics Communications, 2011, 284(6):1645-1647. |
[19] T Chanelière, Bonarota M , Damon V , et al. Light storage protocols in Tm:YAG[J]. Journal of Luminescence, 2009, 130(9):1572-1578. |
[20] Jianguo, Li, Tao, et al. Measurement of output characteristics of Tm:YAG laser at 25–300K[J]. Optics Communications, 2015, 334:118-121. |
[21] Merkel K D , Mohan R K , Cole Z , et al. Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG[J]. Journal of Luminescence, 2004, 107(1/4):62-74. |
[22] Louchet A , Du Y L , Brouri T , et al. Optical investigation of nuclear spin coherence in Tm:YAG[J]. Solid State Sciences, 2008, 10(10):1374-1378. |
[23] Output characteristics of acousto-optical cavity dumped Tm:YAG ceramic laser[J]. Optik – International Journal for Light and Electron Optics, 2016, 127(6):3175-3178. |
[24] Sidorowicza A , Wajlera A , Helena Węglarza, et al. Precipitation of Tm2O3 nanopowders for application in reactive sintering of Tm:YAG[J]. Ceramics International, 2014, 40(7):10269-10274. |
[25] Zhang W X , Pan Y B , Zhou J , et al. Preparation and characterization of transparent Tm:YAG ceramics[J]. Ceramics International, 2011, 37(3):1133-1137. |
[26] R Müller, Fuhrberg P , Teichmann H O , et al. Pulsed and cw Cr,Tm:YAG laser with simultaneous diode and flashlamp excitation[J]. Optics & Laser Technology, 2005, 37(7):570-576. |
[27] Chunting Wu⁎, Jiang Y , Wang C , et al. Pulse-diode-intermittent-pumped 2-µm acousto-optically Q-switched Tm:YAG laser[J]. Infrared Physics & Technology, 2019, 96:151-154. |
[28] Ferrier A , Ilas S , Goldner P , et al. Scandium doped Tm:YAG ceramics and single crystals: Coherent and high resolution spectroscopy[J]. Journal of Luminescence, 2017:S0022231317316599. |
[29] Fei B J , Huang J Q , Guo W , et al. Spectroscopic properties and laser performance of Tm:YAG ceramics[J]. Journal of Luminescence, 2013, 142(Complete):189-195. |
[30] Wu, C, T, et al. Thermal effect and laser characteristics of LD end-pumped CW Tm:YAG laser at room temperature[J]. Journal for Light and Electronoptic, 2017. |
与Tm:YAG相关的案例:
暂无与本产品相关的案例,请访问万博体育全站ManBetX官网的案例页面查看其他案例。
与Tm:YAG相关的解决方案:
与Tm:YAG相关的视频:
暂无与本产品相关的视频,请访问万博体育全站ManBetX官网的视频页面播放其他视频。