当前位置: 首页 » Products » 被动调Q晶体 » Cr:YAG

Cr:YAG

当前位置: 首页 » Products » 被动调Q晶体 » Cr:YAG
Cr:YAG

我司的Cr4+:YAG晶体,又称掺铬钇铝石榴石晶体,化学式为Cr:Y3Al5O12,是一种综合性比较优良的调Q晶体产品。不仅可以用作Q 开关,还可以用作增益介质,因为它具有优异的物理化学性质。在激光测距仪、LIDAR和LIBS 系统的无源Q开关激光器领域有广泛的应用。Cr:YAG具有化学稳定、耐用、抗紫外线、导热性好、损伤阈值高(>500 MW/cm2)、操作简单等优点,正在超越LiF和有机染料等传统材料。Cr:YAG是用于无源Q开关(激光二极管或灯泵浦)Nd:YAGNd:YLFNd:YVO4的优秀且广泛使用的电光材料和其他 0.8~1.2µm 的 Nd(或Yb)掺杂激光器,也是一种可用作CW、脉冲或自锁模可调谐 NIR 固态激光器的活性介质,可调谐范围为1340 – 1580nm以及工作波长为950-1100nm的激光器中用于Q开关的介质。1060 nm 波段的吸收饱和可用于具有闪光灯或激光二极管泵浦的小型 Nd:YAG 振荡器,而不是基于染料或LiF:F中心无源Q开关,使Cr4+:YAG晶体可以实现自锁模 (KML) 状态。它提供了在1450-1580nm处构建脉冲持续时间短于100fs的激光源的机会。

特点

  • 高导热率
  • 高损伤阈值(> 500MW/cm2
  • 优异的理化特性
  • 辐射稳定性

物理和化学特性

属性数值
化学式Cr4+:Y3Al5O12
晶体结构cubic – la3d
晶格参数Å12.01
取向[100] or [110] < ±0.5°
质量密度4.56 g/cm3
莫氏硬度8.5
杨氏模量335 GPa
抗拉强度2 GPa
熔点1970°C
导热系数0.1213
比热/(J·g-1·K-10.59
热膨胀/(10-6 /°C @ 25°C)7.8 <111>
7.7 <110>
8.2 <100>
抗热震参数800 W/m
消光比25dB
泊松比0.25
折射率@ 1064 nm1.83
电荷补偿离子Ca2+, Mg2+

光学性质

属性数值
光密度0.1 to 0.8
荧光寿命3.4μs
浓度0.5 mol % ~ 3 mol %
发射波长1350 nm ~ 1600 nm
吸收系数1.0 cm-1  7 cm-1
基态吸收截面4.3×10-18 cm2
发射态吸收截面8.2×10-19 cm2
传输10% to 90%
涂层AR≤ 0.2% @1064nm
损伤阈值> 500 MW / cm2

抛光

属性数值
方向公差< 0.5°
厚度/直径公差±0.05 mm
表面平整度<λ/8@632 nm
波前失真<λ/4@632 nm
表面质量5-Oct
平行10
垂直
通光孔径>90%
倒角<0.1×45°
HR涂层<= 0.2% (@ 1340nm)
最大尺寸2*2-15*15 mm×20mm

光谱

Cr-YAG调Q晶体-发射谱-南京光宝-CRYLINKCr-YAG调Q晶体-吸收谱-南京光宝-CRYLINK
Cr-YAG调Q晶体-其它谱2-南京光宝-CRYLINKCr-YAG调Q晶体-其它谱1-南京光宝-CRYLINK

参考文献

[1]  Saiki T ,  Nakatsuka M ,  Fujioka K , et al. Cross-relaxation and spectral broadening of gain for Nd/Cr:YAG ceramic lasers with white-light pump source under high-temperature operation[J]. Optics Communications, 2011, 284(12):2980-2984.
[2]  Saiki T ,  Funahashi K ,  Motokoshi S , et al. Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers[J]. Optics Communications, 2009, 282(4):614-616.
[3]  Wu Y ,  Jiang L ,  Qiu F , et al. Fabrication of transparent Yb,Cr:YAG ceramics by a solid-state reaction method[J]. Ceramics International, 2006, 32(7):785-788.
[4] Jiying, Peng, Yi, et al. Passively Q-switched mode locking in a compact Nd:GdVO4/Cr:YAG self-Raman laser[J]. Optics Communications, 2012, 285(24):5334-5336.
[5]  Peng J Y ,  Zheng Y ,  Shi Y X , et al. Passively Q-switched a -cut Nd:GdVO 4 self-Raman laser with Cr:YAG[J]. Optics & Laser Technology, 2012, 44( 7):2175-2177.
[6] A low viscosity slurry system for fabricating chromium doped yttrium aluminum garnet (Cr:YAG) transparent ceramics[J]. Journal of the European Ceramic Society, 2015, 35(14):S095522191530025X.
[7]  Yi X ,  Zhou S ,  Chen C , et al. Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs[J]. Ceramics International, 2014, 40(5):7043-7047.
[8]  Honda Y ,  Motokoshi S ,  Jitsuno T , et al. Temperature dependence of optical properties in Nd/Cr:YAG materials[J]. Journal of Luminescence, 2014, 148:342-346.
[9] Lin, Hong-Yi, Sun, et al. Comparative study between Nd:GYSGG and Nd:YAG lasers passively Q-switched by a Cr:YAG crystal[J]. Journal for Light and Electronoptic, 2018.
[10]  Villafana-Rauda E , R Chiu,  Mora-Gonzalez M , et al. Dynamics of a Q-switched Nd:YVO4/Cr:YAG laser under periodic modulation[J]. Results in Physics, 2018, 12.
[11]  Chen X ,  Lu T ,  Wei N , et al. Fabrication and photoluminescence properties of Cr:YAG and Yb,Cr:YAG transparent ceramic[J]. Optical Materials, 2015, 49:330-336.
[12]  Cafiso S ,  Ugolotti E ,  Schmidt A , et al. Sub-100-fs mode-locking of the Cr:YAG laser using monolayer graphene saturable absorber[C]// Cleo. IEEE, 2013.
[13]  Bernard J E ,  Alcock A J ,  Chepurov S V , et al. Measurement of the frequency of acetylene transitions at 1540 nm with a mode-locked Cr:YAG laser[C]// Leos Summer Topical Meetings. IEEE, 2005.
[14]  Chen J C ,  Lo C Y ,  Huang K Y , et al. Mapping of Cr ions and refraction index profile in Cr:YAG crystal fiber with double-cladding structure[J]. Annals of Physical and Rehabilitation Medicine, 2004.
[15]  Jaspan M A ,  Welford D ,  Xiao G , et al. Atypical behavior of Cr:YAG passively Q-switched Nd:YVO4 microlasers at high-pumping rates[J]. Filtration Industry Analyst, 2000.
[16]  Lin J H , MD Wei,  Hsu H H , et al. High peak power output of a diode-pumped Q-switched and mode locked Nd:LuVO4 with Cr:YAG saturable absorber[C]// Conference on Lasers & Electro-optics-pacific Rim. IEEE, 2007.
[17]  Dong J ,  Shirakawa A ,  Ueda K I , et al. Composite Yb:YAG/Cr:YAG ceramics self-Q-switched laser[C]// Conference on Lasers & Electro-optics. IEEE, 2008.
[18]  Sorokin E ,  Naumov S ,  Kalashnikov V L , et al. Spectral broadening of 50 fs Cr:YAG pulses around 1.5 /spl mu/m in the tapered fiber.  2003.
[19] D Welford,  Jaspan M A . Single-frequency operation of a Cr:YAG laser from 1332 to 1554 nm[J]. Journal of the Optical Society of America B, 2004, 21(12):2137-2141.
[20]  Saiki T ,  Imasaki K ,  Motokoshi S , et al. Oscillation Property of Disk-Type Nd/Cr:YAG Ceramic Lasers with Quasi-Solar Pumping[C]// Conference on Lasers & Electro-optics. American Institute of Physics, 2006.
[21]  Lo C Y ,  Tu S Y ,  Huang K Y , et al. Fused-silica-clad Cr:YAG fiber. IEEE, 2003.
[22] Tsunekane, Taira. High temperature operation of passively Q-switched, Cr:YAG/Nd:YAG micro-laser for ignition of engines. IEEE, 2009.
[23]  Cho W B ,  Schmidt A ,  Sun Y C , et al. Carbon-Nanotube Mode-Locked Cr:YAG Laser[C]// Lasers & Electro-optics. IEEE, 2010.

如果你对我们的Cr:YAG感兴趣,请联系我们获取价格或申请样品。

Cr:YAG相关的文章:

Cr:YAG相关的案例:

Cr:YAG相关的解决方案:

Cr:YAG相关的视频:

暂无与本产品相关的视频,请访问万博体育全站ManBetX官网的视频页面播放其他视频。

XML 地图